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Letter recognition is the foundation of the human reading system. Despite this, it tends to receive little

attention in computational modelling of single word reading. Here we present a model that can be

trained to recognise letters in various spatial transformations. When presented with degraded stimuli

the model makes letter confusion errors that correlate with human confusability data. Analyses of the

internal representations of the model suggest that a small set of learned visual feature detectors

support the recognition of both upper case and lower case letters in various fonts and transformations.

We postulated that a damaged version of the model might be expected to act in a similar manner to

patients suffering from pure alexia. Summed error score generated from the model was found to be a

very good predictor of the reading times of pure alexic patients, outperforming simple word length, and

accounting for 47% of the variance. These findings are consistent with a hypothesis suggesting that

impaired visual processing is a key to understanding the strong word-length effects found in pure

alexic patients.

& 2012 Elsevier Ltd. Open access under CC BY license.
1. Introduction

During reading, the letters comprising a word are recognised,
combined and then converted into meaning and sound. Letter
recognition is the earliest reading specific process and provides
essential information required for lexical-level processing.
Despite this, models of single word reading in the literature do
not generally include a mechanism for letter recognition. This is
particularly true for models based on parallel distributed proces-
sing (Harm & Seidenberg, 2004; Plaut, McClelland, Seidenberg, &
Patterson, 1996; Seidenberg & McClelland, 1989). Other reading
models (Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001; Perry,
Ziegler, & Zorzi, 2007) have a processing stage of letter recogni-
tion which incorporates the interactive activation (IA) model
(McClelland & Rumelhart, 1981). However, even in these cases
the functions of their visual systems are limited by the fact that
the IA model uses a predefined set of visual features as its input,
rather than a purely visual representation of the letters. This
means that important phenomena related to visual processes
including letter confusability effects, font invariance, size invar-
iance and feature extraction are beyond the scope of these
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models. In addition, there has been growing concern about the
issue of how letter position information is encoded in words. This
has inspired several new models such as the theoretical model
based on open-bigrams coding (Grainger & Van Heuven, 2003),
the SERIOL model (Whitney, 2001) and the SOLAR model (Davis,
2010). These models focus more closely on the level of ortho-
graphic processing, but they still do not contain a visual input
stage and so cannot address the effects outlined above.

Human observers can recognise letters in various transforma-
tions quickly, efficiently and accurately; presumably by making
use of an efficient representational system. Only under degraded
viewing conditions does this break down revealing a character-
istic pattern of letter confusability (Bouma, 1971; Gilmore, Hersh,
Caramazza, & Griffin, 1979; Loomis, 1982; Townsend, 1971; Van
der Heijden, Malhas, & Van den Roovaart, 1984). To perform
the same task computationally is non-trivial, which may be why
most existing models of reading avoid simulating this stage of
processing.

To understand the nature of letter representations, two broad
theories of visual recognition have been proposed. The template-
matching account (Neisser, 1967) assumes that letter recognition
is achieved by a process of matching the letter stimulus to an
internal template. However, the obvious problem with this
account, as noted by Høffding (1892) is that people are capable
of recognising letters, irrespective of their size, orientation or font.
It is very difficult to believe that we have stored templates for all
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possible transformations of a letter. To avoid this some normal-
isation process would be necessary to match to a limited number
of internal templates in canonical forms. However, it is not clear
whether this normalisation procedure is biologically plausible
(Rolls & Deco, 2002). The alternative to the template theory is the
feature-based approach (Gibson, 1969). By this account the visual
features of letters are extracted in the early stage of the proces-
sing, and then those features are compared with lists of features
stored in memory. The feature-based theory is supported by
findings from many studies. Probably, the strongest evidence
comes from a neurophysiological study by Hubel and Wiesel in
1959. They found that neurons in the primary visual cortex (V1)
of cats showed a strong feature preference suggesting that feature
detection is a key part of early visual processing. More recently,
Pelli, Burns, Farell, and Moore-Page (2006) examined a wide range
of viewing conditions with human observers varying in their ages
and experience of identifying letters. They found that the effi-
ciency for letter identification was inversely proportional to letter
complexity, almost independent of other conditions (e.g., letter
contrast, presentation duration, eccentricity and letter size). Fiset
et al. (2008) examined what visual features contributed to human
letter recognition by using a novel classification image technique,
called bubbles. The basis of this technique is that the recognition
performance should be impaired if the crucial information is
masked; on the other hand, performance should be less affected if
the information is not necessary. In their study, the visual
information on five spatial frequency bands decomposed from
letter images was masked and then partially revealed with
random bubbles at different locations on the image. The number
of the bubbles was controlled to maintain an accuracy rate close
to 50% correct. The effective information required for letter
recognition was identified by computing the correlations between
the accuracy and the location of bubbles on the space dimension
for each spatial frequency. Fiset et al. found that the most
effective features for letter recognition were line terminations
across upper and lower case letters in Arial font.

Another way to identify useful letter features is to measure the
letter confusability between letters (Bouma, 1971; Gilmore et al.,
1979; Loomis, 1982; Townsend, 1971; Van der Heijden et al.,
1984). Letter confusability is assumed to reflect the visual
similarity between letters that share the same features. The
traditional approach to producing a letter confusability matrix is
to ask subjects to identify letters in a degraded viewing condition,
such as viewing degraded stimuli or viewing stimuli for a very
brief exposure time. Alternatively, some researchers have
attempted to obtain letter confusion values in a normal viewing
condition (Courrieu, Farioli, & Grainger, 2004; Jacobs, Nazir, &
Heller, 1989). For example, Courrieu et al. (2004) recorded the
subjects’ reaction times to discriminate two different letters. The
inverse discrimination times were then used as a proxy for the
confusion values between letters where a longer reaction time
indicates two letters are more similar to each other.

1.1. Pure alexia

Pure alexia (PA) is a neuropsychological deficit generally
caused by lesions in the left ventral occipito-temporal region
(Damasio & Damasio, 1983). PA patients are defined by extremely
slow reading which highly depends on word length and some-
times show a letter-by-letter (LBL) reading strategy; by contrast,
normal readers only show small effects of word length in reading
performance (Weekes, 1997). Pure alexia is of interest here
because there is considerable evidence indicating that the deficit
occurs in the early stage of visual processing, either for processes
which are specific to letter encoding (Arguin, Fiset, & Bub, 2002;
Fiset, Arguin, Bub, Humphreys, & Riddoch, 2005; Fiset, Gosselin,
Blais, & Arguin, 2006), or for processes that subserve more generic
visual operations required for processing both orthographic and
non-orthographic stimuli (Behrmann, Nelson, & Sekuler, 1998;
Farah & Wallace, 1991; Mycroft, Behrmann, & Kay, 2009). The
strong length effect seen in PA patients is thought to indicate that
each letter in a word is explicitly recognised by a serial processing
mechanism so the reaction times are linearly dependent on word
length (Warrington & Shallice, 1980). However, recent research
by Arguin et al. (2002) proposes that PA patients can still process
letters in parallel like normal readers (albeit that their visual
processing is impaired) and the summed letter confusability is a
primary factor that predicts the slow reading times of PA patients.
This is supported by Fiset et al. (2005) who showed that the
abnormally strong word-length effect was eliminated if the
summed letter confusability of letter strings was matched across
different word lengths. Fiset et al. (2005) further argued that, if PA
patients were using a serial mechanism to process letters in a
word sequentially instead of impaired parallel processing, and the
rate of serial processing is linearly correlated with the letter
confusability of the individual letters, then it might explain why
matching the summed letter confusability of letter strings across
different length groups could result in the abolition of the word-
length effect. This would be correct only if PA patients were also
sensitive to the letter confusion values of individual letters.
However, they found the performance of PA patients was not
affected by letter confusability when they were asked to identify
individual letters either in isolation or in a word context. On the
basis of their results, Fiset et al. (2005) suggest that parallel
processing still occurs in PA patients although it is impaired. Only
when the signal to noise ratio of the visual signal is too low would
PA patients adopt a serial strategy such as attention shift.

Another interesting aspect of the PA reading performance is
that PA patients are sensitive to several lexical variables such as
word frequency (Behrmann, Plaut, & Nelson, 1998; Fiset, Arguin,
& McCabe, 2006; Johnson & Rayner, 2007; Montant & Behrmann,
2001), orthographic neighbourhood size (Arguin et al., 2002;
Fiset, Arguin et al., 2006; Montant & Behrmann, 2001), age-of-
acquisition (Cushman & Johnson, 2011), concreteness (Behrmann,
Plaut et al., 1998) and word imageability (Behrmann, Plaut et al.,
1998; Behrmann, Shomstein, Black, & Barton, 2001; Fiset, Arguin
et al., 2006; Roberts, Lambon Ralph, & Woollams, 2010). This
sensitivity to these lexical variables might have an important
implication for the understanding of the reading mechanism in PA
patients. If the patients were using a completely different serial
mechanism for transforming orthography to phonology why
would the reaction times be affected by these variables? How-
ever, if the system is the same interactive parallel system as for
the normal readers, but with impaired early visual processing
then it makes sense that these top down variables would still
affect reaction times.

1.2. Interactive activation model

As far as we are aware only a very few reading models include
a stage of letter processing (Coltheart et al., 2001; Perry et al.,
2007), and in these cases the recognition systems are all based on
the interactive activation (IA) model (McClelland & Rumelhart,
1981; Rumelhart & McClelland, 1982). The IA model consists of
three stages of processing: feature, letter and word levels. Word
recognition starts from using a set of predefined visual features as
input, moves on to the identification of constituent letters, and
then finally to the activation of all candidate words. The commu-
nication between the word level and letter level is through
bidirectional connections, and the communication between the
feature level and letter level is through feedforward unidirec-
tional connections. The IA model provides many valuable insights



Fig. 1. The architecture of the letter recognition network. The network’s input is

bitmap letter images in various different fonts and sizes.
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into the process of letter perception. For example, it captures the
word superiority effect in which there is greater accuracy of letter
detection in words than either in pseudowords or isolated letters
showing that this effect is dependent on the feedback connections
from the word level to letter level. It also shows a contextual
facilitation of letter recognition. A recent study by Rey, Dufau,
Massol, and Grainger (2009) examined different connectivity
parameters within the IA model by using event-related potentials
(ERPs) during letter identification. Their results supported a
version of the IA model which had both feedforward and feedback
connections between feature and letter levels, and lateral inhibi-
tion at the letter level. Despite its considerable success, the IA
model does have some intrinsic limitations. Of particular rele-
vance here is the fact that the IA model was not designed to learn
to capture visual features. Instead the model was designed to
recognise a particular set of predetermined features based on
analyses by Rumelhart and Siple (1974). This means that effects of
invariance (e.g., fonts, sizes and positions) are beyond the scope of
the model. In addition it is unclear how the model would capture
letter confusability effects, although Finkbeiner and Coltheart
(2009) have proposed that adjusting the letter to letter inhibition
in the model might allow for some modelling of confusability.
However, this would still be unable to capture differences in
confusability arising from differing font types. Obviously, all
the reading models that include the IA model as the visual
recognition component will unavoidably inherit these intrinsic
limitations.

The present study is an attempt to show how a connectionist
letter recognition model can provide the link between visual
input and letter recognition. In doing so, we demonstrate how the
model can (1) deal with the problem of size and shape invariance;
(2) generalise to previously unseen letters; (3) extract key
features for letter recognition; (4) simulate confusability effects
in normal readers; (5) account for important behavioural data
from PA patients.
2. Simulation 1

Simulation 1 tested the ability of a multi-layered back-propa-
gation network to recognise a set of upper and lower case letters
presented in different fonts and sizes. The generalisation ability of
the network was explored.

2.1. Network architecture and learning algorithm

Fig. 1 shows the architecture of the network. The network was
a feedforward network and it consisted of three layers of units:
324 visual units, 50 hidden units, and 26 letter units. The number
of hidden units was determined from pilot trials as the minimum
number that provided perfect accuracy and optimal generalisa-
tion. There was an additional case unit to indicate whether the
input is an upper case or lower case letter. This was used to mimic
the situation that is ubiquitous in human confusability experi-
ments where the subject is aware of what case letters they should
expect because all letters are presented in either upper or lower
case. The model is provided with this expectation via the case
unit, but it should be noted that the model can accomplish
recognition of all upper and lower case letters without this unit.

The case unit and each visual unit were connected to each
unit at the hidden layer; similarly each hidden unit was
connected to each unit at the letter output layer. The network
was trained using the back-propagation algorithm with a learn-
ing rate of .1 and momentum of .9. A cross-entropy function was
used to calculate the errors between the activation of the output
unit and the target output. The activation of each unit was
calculated by first determining the net input to that unit and
then transforming the input using a logistic function to constrain
the output activation between 0 and 1 according to the following
equations:

si ¼
X

j

wjiaj ð1Þ

ai ¼
1

1þe�si
ð2Þ

In Eq. (1), si is the net input from all the projections j to the
unit i, aj is the activation of the units j and wji is the weight value
between the units j and i. In Eq. (2), ai is the activation of the unit
i, which is the logistic transformation of its net input.

2.1.1. Visual image representations

The network was trained with bitmap images of letters that
were contained within an 18 by18 pixel grid. Each letter was
presented in four different fonts: Arial; Courier New; Times New
Roman and Helvetica, and five different sizes 8-, 9-, 10-, 11-, and
12-point. Both upper case and lower case letters were used. In
addition letters in 5�7 Dot Matrix fonts were added to the
training examples to allow for an exact replication of the stimuli
from Gilmore et al.’s study (1979). Hence, there were in total 1033
letter images in the training corpus. The letters were represented
in white against a black background. All the letters were posi-
tioned as they usually appear in text and were centred. Some
lower case letters, for example, g, p, q and y, are placed below the
line along which the text is organised. The line was set as the
third row from the bottom on the 18 by 18 pixel grid. All the
letter images were created by using the Matlab programming
software. It is worth noting that these pixel based input repre-
sentations probably do not represent a biologically realistic
simulation of the input to the human visual system provided by



Fig. 2. The average performance of the network on the training set and validation

set as a function of training epoch.

Y. Chang et al. / Neuropsychologia 50 (2012) 2773–27882776
the retina, which would have to capture sensitivity to colour and
spatial frequency. However, the simplified visual representations
used here do reflect the nature of the input to the retina itself as
printed letters are usually constructed from very fine pixels. In
any case we do not consider it is likely that the exact choice of
visual input representations would affect the general conclusions
of the paper.

2.1.2. Frequency effect

In order to simulate human letter recognition realistically it is
important to account for the effect of letter frequency. In Dewey’s
(1970) letter frequency count, the most frequent letter, E,
accounts for 12.68% of all letters in English, while the least
frequent letter, Z, accounts for .06% of all letters. In keeping with
previous modelling works (Plaut et al., 1996; Seidenberg &
McClelland, 1989; Welbourne & Lambon Ralph, 2007) a logarith-
mic function was employed to compress the effective frequency
range. The compressed frequency is the logarithm of the actual
frequency of a particular letter plus a constant k.

Log Frequency ðLFÞ ¼ log frequencyþkð Þ ð3Þ

k was chosen as the value of 1.057 to make the frequency
compression ratio about 8:1. The range of the logarithmic
frequencies was from .0165 to .1335. The compressed frequency
values were used to scale error derivatives for the computation of
weight updates.

2.1.3. Training procedures

The network was trained using 95% of the letter images and
the remaining randomly selected examples were used as the
validation data set. This random removal was subject to the
constraint that for any letter at least one example had to exist
in each size. For each letter in the training set the input units were
set and held to the value corresponding to the pixel of the letter
image that they represented. Activation was propagated through
the network and the output of each output unit was compared
with its target value. Error was calculated using cross entropy and
this error was used to calculate weight changes according to the
standard back-propagation algorithm. The network was trained
using full batches, which meant the weight changes were accu-
mulated over all letter images and only updated when the full set
had been completed. To avoid the possibility that the simulation
result could be the consequence of one particular set of initial
weights 10 networks were trained with 10 different random
initial weights.

2.1.4. Testing procedures

The performance of the network was tested on the training
corpus every 100 epochs during the whole training period. The
letter unit with the highest activation in the output layer was
taken as the network response. The generalisation ability of the
network was tested by using the validation data set, which had
been withheld during training.

2.2. Results

Fig. 2 shows the average performance of the network as a
function of the training epoch. The performance of the network
followed a typical asymptotic learning trajectory with most of the
learning occurring in the first 300 epochs. By epoch 500 the
performance had reached asymptote and at this point the gen-
eralisation performance of the network was at 96.42%. The results
showed the model can recognise all the letters in the training
corpus and also achieve good performance on letters never seen
before.
3. Simulation 2

A key objective for the current study is to examine how well
the network could reproduce human confusability data and to
explore the representational structure that underpins this; a good
match between the model and human data would suggest that
the model had extracted a similar set of features to support
recognition and these features should be detectable in the
structure of the hidden representations. In all the human studies
letter confusion values are measured in a degraded viewing
condition that gives approximately 50% letter identification accu-
racy. To simulate this in the model we added Gaussian blur to the
input images mimicking the degraded viewing conditions of the
human experiments.

3.1. Method

3.1.1. Training procedures

The network was retrained on all the letter images including both the training

and validation sets. All other training procedures are the same as in Simulation 1.

The reason for training the network on all letters was to ensure that when it came

to analysing the internal representations there would be no spurious effects

arising from the fact that some letters were missing from the training set. To

ensure that the network was still able to generalise an additional test was

performed where the network was exposed to letters in fonts it had previously

not seen. The network was tested on five different fonts Arial Unicode MS, Courier,

Bookman, Verdana and Lucia Console with five different sizes 8-, 9-, 10-, 11- and

12-point.The network was able to recognise an average of 90.9% of these correctly

indicating that this new method of training had not compromised the general-

isation performance.

3.1.2. Generating letter confusability matrices

To generate the letter confusability matrices from the model, the first important

procedure was to determine how much Gaussian noise should be added into the

letter images to mimic a distorted viewing condition. As most letter confusion values

in human data were measured by using upper case letters, the test stimuli were

upper case letters including four different font sets of 10-point upper case letter

images (Arial, Courier New, Times New Roman and Helvetica), and one set of 5�7

upper case letters in Dot Matrix font. Gaussian noise with standard deviation ranging

from 0 to 1 in steps of .02 was added to each pixel in the image. An example of letter

C degraded with different amounts of noise is shown in Fig. 3. Each noise condition

was tested for 100 trials. The appropriate noise level to test confusability was

selected separately for each of the five fonts to be the point where the performance of

the network had decreased to 50% correct (see Fig. 4).

3.1.3. Testing procedures for letter confusability matrices

After the appropriate distortion levels for each font had been determined, each

of 26 upper case letters in each font was tested 150 times. A letter confusability



Fig. 3. A example of letter C degraded with different amounts of noise.

Fig. 4. The performance of the network with Gaussian noise added to the input

tested on five different fonts.
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matrix was computed by measuring the proportion of times each output unit was

given as a response for each presented image letter. To assess the similarity

between computer and human generated matrices, correlation coefficients were

computed for the main-diagonal values and symmetrised off-diagonal values of

the matrices (Loomis, 1982; Courrieu et al., 2004). The main-diagonal values of the

confusability matrix represent the accuracy performance of the network on 26

letters. The more interesting data comes from the symmetrised off-diagonal

values, which are the average confusability values of any two letters pairs. For

example, the confusion value between letter E and letter F is the average of the

confusability value for letter E recognised as letter F and the confusability value

for letter F recognised as letter E. Four representative letter confusability studies

were used as a measure of human letter confusability; details of these studies are

summarised in Table 1.
3.2. Results

Tables 2A and 2B show the correlations between main-diagonal values and

off-diagonal values of letters from all simulations and four previously reported

human experiments. To help the interpretations of the results, Cohen’s (1988,

1992) guidelines were applied in which the effect size of the correlation value

smaller than .24 is considered small and the value greater than .36 is considered

large, while any correlation value between these two boundaries indicates a

medium effect. As shown in Table 2A, the simulations with Courier New font had

significant main diagonal correlations with Townsend’s (1971) and Loomis’ (1982)

data. There were also significant correlations between the simulation with Dot

Matrix font and all four experiments except Van der Heijden et al. (1984) in which

the highest one was with Gilmore et al.’s (1979) data. All of these correlations

would be considered large according to Cohen’s classification. The correlations

between main-diagonal values of letters from all other simulations and experi-

mental data were generally small. The letters in other fonts used in the network

are different from those used in most letter confusability experiments (see

Table 1). Only the 5�7 Dot Matrix font letters created are exactly the same as

those used in Gilmore et al.’s (1979) experiment. It appears that the differences

between fonts tend to reduce the correlations between recognition accuracy data.

This is supported by the fact that the correlations between the human accuracy

data in different fonts also varied from small to large values. Correlations between

different fonts in the simulations also ranged widely. The large correlation

between the Arial and Helvetica fonts reflects the fact that many of the letters

are highly similar to each other. For the off-diagonal correlations (representing

letter confusability in Table 2B) all the correlations were significant (and large by
Cohen’s classification); again the strongest correlation was found when the

simulation used the same font letter as the human data (i.e., with the Dot Matrix

font). These results suggest that confusability is highly dependent on font types.

Unless the fonts are identical it is very difficult to reproduce the exact accuracy

levels, and while the likely confusions are reasonably well predicted by the model

using a different font, the best correspondence between human and simulation

data is achieved when the fonts are an exact match.

In addition to consideration of the correlation data, it is also instructive to

compare the confusions of individual letter pairs made by the model with the

human data. We calculated the top four of human confusions for each letter to see

whether it also appeared in the top four of the simulation confusions. Table 3

shows the result of this comparison where for each letter the first row shows the

confusion data from Gilmore et al.’s (1979) study and the second row shows the

data generated from the simulation with Dot matrix fonts as input. Those letter

pairs that did not appear in the human confusions are marked in bold. Overall the

match rate of the top four confusions made by human observers and the model

was 60.58%, which is consistent with the correlation result. We also performed the

same analyses to compare the two sets of human confusion data (i.e., Gilmore

et al., 1979 vs. Loomis, 1982) which had the highest correlation confusions as

shown in Table 2B. The analysis revealed that two sets of confusion data agreed

64.42% of the time in the top four confusions, which was close to Gilmore et al.’s

data versus the simulation data. These results together with the correlation results

suggest that the model made letter confusions, which were similar to those that

can be observed in human subjects.

3.3. Analyses of the internal representations of letters in the model

The results heretofore demonstrate that the model can deal with the problem

of size and shape invariance, generalise to previously unseen letters and produce

human-like confusability patterns. This section is concerned with trying to

understand the underlying representations that support these abilities and

identifying what features are used for recognition in the model. Four analyses

were conducted: (1) a principal components analysis was used to check that the

representations of different sizes and cases of the same letter were similar; (2)

hierarchical clustering analysis was used to explore the internal similarity

structure of different letter representations; (3) the relationship between the

confusability data and the internal representations was explored; (4) factor

analysis was used to try and identify whether the model had extracted a set of

visual feature detectors and, if so, which features were important in letter

recognition.

3.3.1. Similarity of same letter representations

One method for assessing the representations of hidden units is to examine

the similarity between the activations of all hidden units for all letters. The

representations for a particular letter in different transformations should be very

similar (i.e., their spatial distances should be very close to each other). To explore

this visually principal component analysis was applied to identify the first two

principal components of the multidimensional vector formed from the activations

of the hidden units. Fig. 5 shows these components for five letter clusters [A/a, B/b,

C/c, D/d, E/e] with all possible transformations including 8-point, 9-point, 10-

point, 11-point and 12-point upper case and lower case letters. Each letter was

seen in 41 distinct transformations, and it is clear that the representations form

letter specific clusters, indicating that the internal representations of a particular

letter in different transformations are similar. It is also worth noting that cluster A

and cluster C are more distinctive from other clusters because they may be more

dissimilar to others. While clusters B, E and D appear to have some overlaps

indicating these letter clusters are more similar to each other. However, it is

important to bear in mind that only two principal components were used to draw

this figure, and the separation between letter clusters may look much clearer in a

higher dimensional space.

3.3.2. Similarity structure across letters

The internal similarity between representations for different letters was

explored by using a hierarchical clustering technique. An agglomerative method

was used to combine two clusters into a new cluster based on the average

similarity of letters between two clusters. Fig. 6 shows the hierarchical clustering

plot of letter similarity generated from the network using all the upper case

letters. The most similar letter pair was the letter P and letter F. The letter pairs K

and R, O and Q, and I and T were also very similar. It also can be observed that

those letters which had unique angles or line terminations (e.g., M, H, N, W) were

grouped together as were letters with a round shape (e.g., C, G, O, Q).



Table 2B
Correlations for symmetrised off-diagonal values between letter confusability matrices from simulations and experimental data.

Gilmore et al. (1979) Loomis (1982) van der Heijden et al. (1984) AR simu. CN simu. TNR simu. HEL simu. DM simu.

Townsend (1971) .552nn .612nn .680nn .587nn .469nn .482nn .572nn .484nn

Gilmore et al. (1979) .747nn .692nn .560nn .556nn .381nn .538nn .670nn

Loomis (1982) .680nn .584nn .522nn .465nn .556nn .503nn

van der Heijden et al. (1984) .598nn .557nn .484nn .582nn .617nn

AR simu. .657nn .649nn .988nn .653nn

CN simu. .688nn .653nn .649nn

TNR simu. .647nn .478nn

HEL simu. .651nn

Note: nnSignificant (po .01); nSignificant (po .05). AR: Arial; CN: Courier New; TNR: Times New Roman; HEL: Helvetica; DM: Dot Matrix; Simu.: Simulation.

Table 1
Summary of four letter confusability experiments.

References Procedure Presentation Font/size Case

Townsend

(1971)

The stimulus exposure sequence was white pre-stimulus with fixation point, stimulus

with a random letter, and post-stimulus field with fixation point. Each letter was black

against a white background. The luminance for all stimuli was 5.6 fL. The subject specific

stimulus durations were chosen to produce 50% correct performance

Tachistoscope Typewriter

font/8�11 in.

Upper

case

Gilmore et al.

(1979)

Each letter was green in colour against a dark background. The fixation point was

presented for 1 s at the beginning of each trial, and the stimulus letter was briefly presented 1 s

after the fixation point disappeared. Then, it was followed by a blank screen. The stimulus

durations for subjects ranged from 10 to 70 ms to obtain the correct response rate of .5

Computer 5�7 Dot Matrix Upper

case

Loomis (1982) The visual stimuli were the transparent characters subjected to optical low-pass spatial

filtering prior to viewing. The visual stimuli were viewed with the right eye in a darkened

room. The stimulus duration was 2 s. The correct recognition performance was about .6

Shutter Degraded Helvetica Extra

Light/5.7 mm height

Upper

case

van der Heijden

et al. (1984)

Each letter was white against a dark background and subtended a visual angle

of .321� .481. The fixation point was displayed until the subjects clearly saw the

fixation point. After that, the stimulus letter was briefly presented and the subjects

had to respond with a letter name within 500 ms. The stimulus durations for subjects

ranged from 3 to 18 ms to obtain the correct response rate of .5

Computer Sans Serif Roman Upper

case

Table 2A
Correlations for diagonal values between letter confusability matrices from simulations and experimental data.

Gilmore et al. (1979) Loomis (1982) van der Heijden et al. (1984) AR simu. CN simu. TNR simu. HEL simu. DM simu.

Townsend (1971) .212 .387 .477n .339 .537nn .278 .347 .464n

Gilmore et al. (1979) .684nn .503nn .004 .269 � .029 .045 .566nn

Loomis (1982) .538nn .164 .503nn .197 .212 .479n

van der Heijden et al. (1984) � .056 .363 .279 � .037 .346

AR simu. .528nn .360 .991nn .321

CN simu. .548nn .538nn .582nn

TNR simu. .347 .248

HEL simu. .330

Note: nnSignificant (po .01); nSignificant (po .05). AR: Arial; CN: Courier New; TNR: Times New Roman; HEL: Helvetica; DM: Dot Matrix; Simu.: Simulation.
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3.3.3. Prediction of the letter confusability matrices

We have already shown that when the input is noisy the network can produce

confusability matrices that have a significant correlation with human data. It

would therefore be interesting to examine whether there are relationships

between the internal representations generated from intact input and the

confusability matrices generated from noisy input. If the similarity of the internal

representations in the model can predict human confusability data then it

suggests that this data is useful in helping us understand the internally extracted

features that support letter recognition. The internal representations for each 10-

point, upper case letter in each font were computed separately. The inter-letter

inverse Euclidean distances from the internal representations were calculated for

each letter pair. To examine whether the internal representations can predict the

human confusion data, the correlations between the pairwise inter-letter inverse

Euclidean distances and the symmetrised human confusability matrices were

calculated (Table 4A). In addition, correlations were also computed with the

confusion data from the network itself (Table 4B). All correlations with the human

confusion data were significant. Correlations were higher when using the same

font as the human experiment (i.e., the Dot Matrix font); consistent with the

previous result confirming that confusability data is heavily influenced by font

type. Confusability matrices are widely thought to be a useful tool to identify
letter features (Bouma, 1971; Gilmore et al., 1979; Loomis, 1982; Townsend, 1971;

Van der Heijden et al., 1984) and this result confirms that there is indeed a strong

relationship between the internal representations of letters and the types of letter

confusions that are produced.
3.3.4. Key Features for letter recognition from internal representations

The results so far strongly suggest that the network has developed a feature

based recognition system and that these features may be close to those used by

human observers since they produce similar confusability matrices. Here we

attempt to identify exactly what features of letters the network has learned to

detect by using a rotated factor analysis applied to the activation values of the

hidden units. Both upper and lower case letter data were entered into the analysis.

Eight components were extracted, and the component matrix was rotated by

using the orthogonal (varimax) method to allow for a better interpretation. The

total variance explained by the eight components was 86%. The rotated compo-

nent loading matrix and the total additional variance explained by each compo-

nent are shown in Table 5. To interpret the data, we considered all values above .5

using two levels of significance: (1) loadings with values greater than .6 were

marked in bold as highly important; (2) loadings with values between .5 and .6



Table 3
Comparison of the top four confusion values between human letter confusions and

confusions made by the network with the Dot Matrix font as input.

Rank 1 2 3 4

A A-R (.133) A-H (.081) A-N (.042) A-M (.040)

A-N (.091) A-H (.093) A-R (.058) A-P (.049)
B B-G (.067) B-D (.059) B-S (.058) B-R (.051)

B-E (.090) B-S (.084) B-P (.067) B-R (.046)

C C-G (.121) C-E (.049) C-O (.040) C-N (.032)

C-L (.010) C-O (.091) C-G (.082) C-E (.075)

D D-O (.107) D-B (.059) D-G (.053) D-Q (.040)

D-L (.060) D-U (.059) D-Q (.057) D-O (.048)

E E-G (.052) E-B (.050) E-C (.049) E-F (.041)

\ E-B (.090) E-C (.075) E-F (.061) E-L (.052)
F F-P (.159) F-E (.041) F-R (.040) F-K (.028)

F-P (.156) F-K (.085) F-R (.068) F-E (.061)

G G-C (.121) G-O (.113) G-Q (.112) G-S (.081)

G-Q (.126) G-C (.082) G-O (.068) G-J (.058)
H H-M (.227) H-W (.221) H-N (.205) H-A (.080)

H-M (.124) H-N (.092) H-A (.090) H-W (.063)

I I-T (.063) I-Z (.020) I-E (.015) I-L (.013)

I-T (.194) I-Y (.045) I-K (.033) I-L (.033)

J J-U (.024) J-Z (.018) J-I (.012) J-G (.009)

J-U (.078) J-Q (.06) J-G (.058) J-S (.050)
K K-X (.111) K-R (.068) K-E (.041) K-H (.036)

K-R (.087) K-F (.085) K-W (.05) K-M (.047)
L L-N (.045) L-E (.033) L-K (.020) L-G (.013)

L-C (.105) L-D (.060) L-E (.052) L-U (.037)
M M-H (.227) M-N (.113) M-W (.056) M-A (.040)

M-H (.124) M-N (.111) M-W (.070) M-X (.059)
N N-H (.205) N-W (.116) N-M (.113) N-L (.045)

N-W(.127) N-M (.111) N-H (.092) N-A (.091)
O O-Q (.142) O-G (.113) O-D (.111) O-B (.047)

O-C (.091) O-Q (.069) O-G (.068) O-U (.065)
P P-F (.159) P-R (.076) P-D (.036) P-B (.030)

P-F (.156) P-R (.135) P-B (.067) P-A (.049)
Q Q-O (.142) Q-G (.112) Q-D (.040) Q-R (.033)

Q-G (.126) Q-O (.069) Q-J (.060) Q-D (.057)

R R-A (.133) R-P (.076) R-K (.068) R-B (.051)

R-P (.135) R-K (.087) R-F (.068) R-A (.058)

S S-G (.081) S-B (.058) S-R (.032) S-E (.027)

S-B (.084) S-Z (.060) S-J (.050) S-A (.039)
T T-I (.063) T-P (.027) T-Y (.027) T-F (.021)

T-I (.194) T-Y (.066) T-F (.035) T-S (.023)
U U-V (.042) U-O (.041) U-W (.035) U-Q (.032)

U-J (.078) U-O (.065) U-D (.059) U-Q (.045)

V V-Y (.113) V-U (.042) V-B (.029) V-D (.024)

V-Y (.054) V-R (.013) V-G (.012) V-I (.011)
W W-H (.221) W-N (.116) W-M (.056) W-U (.035)

W-N (.127) W-M (.070) W-H (.063) W-X (.059)
X X-K (.111) X-N (.043) X-M (.040) X-R (.037)

X-M (.059) X-W (.059) X-K (.034) X-N (.033)

Y Y-V (.113) Y-T (.027) Y-P (.011) Y-X (.011)

Y-T (.066) Y-V (.054) Y-M (.051) Y-I (.045)
Z Z-E (.033) Z-C (.029) Z-X (.022) Z-I (.020)

Z-S (.060) Z-E (.047) Z-Y (.028) Z-R (.021)

Note: in each block, the first row shows the data from Gilmore et al.’s (1979) study

and the second row is the simulation data based on the Dot Matrix font. For those

letter-pairs which do not appear in the top four confusions of human data are

marked in bold.
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underlined as important. Our interpretations of the eight components are listed

below:
�
 The first component loaded positively on most letters with round curve

shaped feature, for example, G, O, Q, U and u.
�
 The second component showed very high loadings on the letters such as A, K,

R, X, a, h, k and n, which may be interpreted as the presence of an n-shaped

feature on the bottom half of letters.
�
 The third component had very high loadings on the letters, which had a

vertical central line feature such as I, T, i, l and t. It also loaded positively on Z,

suggesting that the network may be misinterpreting the diagonal in Z as a

central vertical line.
�
 The fourth component had high loadings on the letters B, F, P, b, p and r. The

common feature among these letters seemed to be an inverted L shape or
simply the lower case r-shape. Letters h and n, which also have this shape

loaded highly on this factor as well.
�
 The fifth component loaded on to V, Y, v and y suggesting the detection of a

V-shaped feature.
�
 The sixth component loaded on to E, Z, c, e and z, which seems to suggest the

detection of a c-like feature.
�
 The seventh component loaded heavily on j, suggesting the detection of the

hook-shaped feature. The component also loaded on s, g, S and J.
�
 The last component had a high loading on m and also loaded positively on W

(loadings on M and w were also both above .4). This might suggest it

responded to repeated vertical strokes.

These eight visual features contrast with the 16 features used by the IA model.

The 16 IA features were used to construct letters in a specific font. They were all

straight line segments including six vertical lines, six horizontal lines and four

oblique lines with different orientations. Hence, the letters were composed of the

combinations of those line segments without using any circular shapes. By

contrast, the eight crucial features identified by the present model have some

simple circular and angular shapes as well as the combinations of line segments in

addition to direct line segments. These features have emerged from a purely

statistical process of exposure to different letters in different fonts and

transformations.

It should be noted that the use of the factor analysis is heavily dependent on

the properties of the factor matrix and the rotation of the matrix, which could

influence the interpretation of the features. However, the key point here is not the

exact interpretation, but the fact that the network does extract statistically

significant letter features which support recognition across a range of fonts, sizes

and cases and can account for a very high percentage of variance in the hidden

unit activations.
4. Simulation 3

According to the letter confusability account, the abnormally
strong length effects observed in PA patients are driven by letter
confusability (Arguin et al., 2002; Fiset et al., 2005; Fiset, Gosselin
et al., 2006), suggesting patients are sensitive to the visual
processing difficulty of letters.

This interpretation contrasts with the more generally held
assumption that sequential letter processing leads to an emergence
of strong length effects in PA patients (Warrington & Shallice,
1980). One aspect of the debate between these two accounts
focuses on whether summed letter confusability or simple length
best account for the slow reading of PA patients. These two
variables carry theoretically different meanings, although they
are highly correlated statistically. To explore the issue of whether
word length or visual difficulty is a better factor for predicting PA
patients’ RTs, Simulation three calculated the summed error score
for each letter and used it as a variable in a series of multiple
regression analyses predicting PA patients’ RTs for word reading.
The error score generated from the simulation is a direct and
accurate measure of the visual difficulty of recognising a particular
letter and so allows us to further explore the question of whether
PA patients’ poor reading stems from a visual processing problem
or an inability to engage parallel processing mechanisms. Of course
visual difficulty and word length will be very highly correlated, as
long words are intrinsically more difficult visually than short
words. However our prediction would be that models that include
a measure based directly on visual difficulty should predict a small
but significant additional portion of the variance in patients RTs.

4.1. Patient data

Human naming latency data were taken from a case-series study
on PA patients (Roberts Woollams, Kim, Beeson, Rapcsak, & Lambon
Ralph, in press). In one of their experiments, 22 PA patients were
tested on Weekes’s (1997) monosyllabic word and nonword list with
item lengths ranging from 3 to 6 letters. The stimuli consisted of 68
high frequency words, 68 low frequency words and 68 nonwords
matched for number of phonemes, initial phoneme, orthographic
neighbourhood size, number of enemies and friends, summed bigram



Fig. 5. The relationship between the representations of five letter clusters [A/a, B/b, C/c, D/d ,E/e] with 41 transformations showing the first two principal components.

Fig. 6. Hierarchical clustering plot of the letter similarity generated from the activations of the hidden units in the network with all upper case letters as input.

Table 4A
Correlations for symmetrised off-diagonal values and inter-letter inverse Euclidean distances from the internal representations of each

upper case letter in each font generated by the network.

AR inver.

Euclid. dist.

CN inver.

Euclid. dist.

TNR inver.

Euclid. dist.

HEL inver.

Euclid. dist.

DM inver.

Euclid. dist.

Townsend (1971) .445nn .505nn .472nn .445nn .437nn

Gilmore et al. (1979) .565nn .510nn .388nn .565nn .708nn

Loomis (1982) .522nn .515nn .424nn .522nn .531nn

van der Heijden et al. (1984) .550nn .533nn .474nn .550nn .556nn

Note: nnSignificant (po .01); nSignificant (po .05).

AR: Arial; CN: Courier New; TNR: Times New Roman; HEL: Helvetica; DM: Dot Matrix; Inver. Euclid. Dist.: Inverse Euclidean Distance.
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frequency and average grapheme frequency to exclude potentially
contaminating effects. All items were presented in lower case Courier
New font.

This patient data encompasses a wide range of severity among
the patients as indexed by overall reading speed. To account for
the variance related to these severity differences the patients
were categorised into three groups of severity based on their
reading speed. Eight patients with RTs above 3000 ms were in the
severe group, and others were equally divided into the mild and
moderate groups with seven patients for each. RTs for these two



Table 4B
Correlations between the confusion values from the network and the

inter-letter inverse Euclidean distances from the internal representa-

tions of each upper case letter in each font generated by the network.

Font type Correlations

Arial .717nn

Courier New .762nn

Times New Roman .650nn

Helvetica .712nn

Dot Matrix .847nn

Note: nnSignificant (po .01); nSignificant (po .05).

Table 5
Principal components analysis (with varimax rotation) loadings.

Component

1 2 3

A .258 .811 .046

B .494 .425 .066

C .789 � .154 .364

D .729 .145 .003

E .271 .525 .307

F � .233 .448 .184

G .905 .122 .074

H .307 .685 � .252

I .080 � .094 .957
J .598 � .086 .169

K .195 .867 .108

L .361 .269 .430

M .164 .610 � .114

N .417 .669 � .232

O .809 � .114 .092

P � .112 .386 .031

Q .832 .121 � .018

R .136 .832 � .030

S .558 .180 .296

T .028 .098 .877
U .871 .115 � .156

V .056 .296 .057

W .347 .504 .031

X � .099 .824 .049

Y � .138 .201 .302

Z .145 .270 .514

a .594 .514 .031

b .458 .291 .059

c .552 � .110 .312

d .789 .247 � .119

e .487 .320 .137

f � .371 .113 .646
g .598 .269 � .127

h .234 .683 � .138

i � .065 � .049 .932
j � .052 .222 .313

k � .058 .823 .158

l � .066 � .135 .888
m .215 .367 .158

n .485 .541 � .188

o .787 � .034 .005

p .265 .179 � .038

q .752 .344 � .132

r � .245 .170 .309

s .359 .242 .262

t � .021 .142 .768
u .894 .105 � .193

v � .051 .259 � .009

w .372 .461 .031

x � .174 .675 .089

y � .221 .190 .019

z .113 .218 .398

% Of variance explained

by each component

20.98 17.12 11.93
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groups ranged from 590 ms to 1144 ms and from 1650 ms to
2972 ms respectively. To examine the relationship between
individual patients’ data and summed error score, summed error
score of all letters in a word was generated from the simulation
when the input was noisy. The same font type (i.e., Courier New)
as the stimuli in the human experiment was used. The correlation
between patients’ data and summed error score was computed.
Fig. 7A shows the correlation between each patient’s word
naming RT and summed error score, arranged by severity. The
result for nonword naming is shown in Fig. 7B. As can be seen,
there is a general pattern that the correlation increases with
severity, although it is not perfect and seems to be more
4 5 6 7 8

.182 .184 .078 .069 .211

.625 .110 .068 � .138 � .003

.029 � .092 .285 � .105 � .003

.339 .059 � .226 � .284 � .037

.247 .261 .516 � .233 � .062

.688 .263 .172 � .094 � .092

.014 .003 � .002 .109 .205

.352 .245 � .136 � .177 .158

� .064 .061 � .045 .091 � .079

� .282 .118 .074 .463 � .415

.152 .110 .100 .068 .068

.221 � .026 .193 � .491 � .213

.002 .539 .013 � .224 .404

.264 .119 � .299 .034 .119

.066 � .300 .075 � .089 .328

.777 .384 � .065 � .029 � .021

� .076 � .208 � .155 .137 .201

.280 .291 .059 .001 � .037

.283 .125 .207 .435 .021

.022 .206 .128 .086 .046

.088 .090 � .189 � .272 � .023

.091 .842 � .063 � .132 � .112

.428 .022 .011 .214 .526

.024 .274 .244 .261 .035

� .069 .778 .175 .206 .104

� .283 .066 .653 .085 � .164

� .024 .050 .344 .157 .104

.734 � .057 .079 � .114 .108

.254 � .056 .637 � .059 .021

� .052 .054 .348 .105 � .077

.316 .055 .578 � .055 .226

.447 .045 .390 � .068 .052

.091 .084 .122 .395 � .060

.594 .000 � .025 � .142 .009

� .027 .138 .085 .001 .015

� .349 � .005 � .096 .736 � .167

.306 .205 .237 .053 .049

.087 � .215 .164 .029 � .005

� .137 .266 .098 � .177 .721
.531 � .177 .032 � .089 � .022

.361 � .271 .238 � .002 .228

.802 .014 � .149 .117 .051

.007 � .121 .102 .192 � .054

.667 .083 .481 � .159 .014

.332 .031 .339 .512 .072

.129 .030 .384 .113 .241

.088 .047 .054 � .156 � .073

.180 .813 .146 � .128 .031

.387 � .253 � .014 .177 .498

.129 .324 .320 .385 .077

.096 .792 � .052 .313 .081

� .111 .097 .802 .122 .062

11.25 8.11 7.45 5.24 3.93



Fig. 7. (A) Correlations between summed error score and individual patients’ word naming RTs ordered by severity. (B) Correlations between summed error score and

individual patients’ nonword naming RTs ordered by severity.

Table 6A
Correlations between predictor variables and word naming RT used in the regression model.

WL OrthN SES Group WL_Group SES_Group LnCE_Freq

IV WL 1

OrthN � .754nn 1

SES .963nn
� .761nn 1

Group � .034 .031 � .030 1

WL_Group .002 � .009 .005 � .013 1

SES_Group .005 � .012 .007 � .011 .964nn 1

LnCE_Freq � .079nn .219nn
� .114nn .027 0 � .001 1

DV RT(s) .197nn
� .193nn .207nn .604nn .178nn .186nn

� .144nn

Note: nnCorrelation is significant at the .01 level; nCorrelation is significant at the .05 level. WL: word length; OrthN: orthographic neighbourhood

size; SES: summed error score. Group: severity group; SES_Group: the product of summed error score and group; WL_Group: the product of word

length and group; Ln_CE_Freq: log CELEX frequency.
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consistent for the nonwords than the words. At the group level
the correlations were clearly higher for the severe group than for
the moderate group, and for the moderate group than for the mild
group. These results suggest that there is an interaction between
severity group and summed error score.
Table 7
Regression coefficients of all predictor variables.

Predictor Word Restricted word Nonword

Beta P value Beta P value Beta P value

WL .049 .388 .051 .364 .056 .460

OrthN � .049 .038n
� .045 .059 .012 .715

SES .124 .029n .118 .038n .185 .016n

Group .617 o .001nn .617 o .001nn .642 o .001nn

WL_Group .012 .828 .013 .811 .093 .208

SES_Group .179 .001nn .177 .002nn .113 .124

LnCE_Freq � .131 o .001nn
� .122 o .001nn – –

AoA – – .046 .003nn – –

IMG – – � .018 .222 – –

R2 (%) 47.2 47.4 49.0

Note: nnCorrelation is significant at the .01 level; nCorrelation is significant at the

.05 level. Beta coefficients presented were based on the standardized scores. WL:

word length; OrthN: orthographic neighbourhood size; SES: summed error score;

Group: severity group; SES_Group: the product of summed error score and group;

WL_Group: the product of word length and group; Ln_CE_Freq: log CELEX

frequency; AoA: age-of-acquisition; IMG: imageability.
4.2. Multiple regression analyses on reaction time

Multiple regression analyses were used to examine: (1)
whether models including summed error score would predict
more of the variance in PA patients’ RTs than models that only
include word length; (2) whether there is an interaction between
summed error score and severity group. To perform multiple
regression analyses, any reaction time outside three standard
deviations (SD) from the mean was filtered out. In addition to
word length, PA patients are also sensitive to word frequency
(Behrmann, Plaut et al., 1998; Johnson & Rayner, 2007; Montant &
Behrmann, 2001) and orthographic neighbourhood size (Arguin
et al., 2002; Fiset, Arguin et al., 2006; Montant & Behrmann,
2001). Both variables were also included into the multiple
regression analyses. Word frequency was based on the CELEX
frequency norm (Baayen, Piepenbrock, & Gulikers, 1995) and the
logarithmic transform of frequency (Ln_CE_Freq) was used in the
regression model to maximise the amount of variance that could
be accounted for by this variable. Obviously the frequency factor
was considered only for the regression on word naming latency
and not for the nonword analysis. Orthographic neighbourhood
size (OrthN) was taken from a database of the English Lexicon
Project (Balota et al., 2007). Severity group was labelled numeri-
cally before being fed into the regression. To examine whether
there was an interaction between severity group and summed
error score, an interaction variable was also included in the
regression. Similarly, another interaction predictor variable of
severity group and word length was also entered into the model.
Table 6A shows the inter-correlations between all the predictor
variables and the simple correlations between patients’ word
naming RTs and the predictor variables were also included. As we
had expected, word length was highly correlated with summed
error score and orthographic neighbourhood size.

All the variables were simultaneously entered into the regres-
sion model to investigate which of these variables uniquely
predicted a significant proportion of the variance. The result is
shown in Table 7.

The regression model produced an R2 value of .472 (adjusted
R2
¼ .470), po .001. Both log CELEX frequency and orthographic

neighbourhood size made a significant contribution to account for
the variance of RT. More importantly, severity group, summed
error score and the interaction variable of summed error score by
severity group, had significant unique effects, whilst word length
was excluded from the regression model. For nonword naming,
Table 6B
Correlations between predictor variables and nonword naming RT used in

WL OrthN S

IV WL 1

OrthN � .732nn 1

SES .953nn
� .738nn

Group � .047 .057 �

WL_Group .001 � .020

SES_Group .001 � .017

DV RT(s) .193nn
� .132nn

Note: nnCorrelation is significant at the .01 level; nCorrelation is significant

size; SES: summed error score; Group: severity group; SES_Group: the prod

length and group.
the inter-correlations between all the predictor variables and the
simple correlations between patients’ nonword naming RT and
the predictor variables can be found in Table 6B. The regression
result is also shown in Table 7. The R2 associated with the
nonword analysis was .490 (adjusted R2

¼ .487). Similar to the
word analysis, severity group and summed error score were
selected by the regression model and contributed significantly
to the prediction of RTs, although the interaction of summed error
by severity score was not significant. Word length was again
excluded from the regression model and orthographic neighbour-
hood size also did not contribute significantly.

Several studies have shown that PA patients are also sensitive
to other lexical variables, for instance, age-of-acquisition and
imageability (Behrmann, Plaut et al., 1998; Behrmann et al.,
2001; Cushman & Johnson, 2011; Fiset, Arguin et al., 2006).
Unfortunately not all of the items used for analysis have ratings
on these measures. However to see whether there was any
evidence that an inclusion of these variables might affect the
results of the regression on word naming latency, we performed
an additional regression which included these two variables using
values taken from the norms reported by Bird, Franklin, and
Howard (2001), and Gilhooly and Logie (1980). The results
showed that age-of-acquisition was a significant predictor while
imageability was excluded from the regression model, as shown
in Table 7. The significance of other variables was not changed
and the variance accounted for was marginally increased to 47.4%.
the regression model.

ES Group WL_Group SES_Group

1

.059 1

.001 0 1

.001 � .002 .952nn 1

.191nn .629nn .201nn .200nn

at the .05 level; WL: word length; OrthN: orthographic neighbourhood

uct of summed error score and group; WL_Group: the product of word



Table 8
Comparison of regression coefficients and R2 change (from the full model) for separate Length-based and SES-based models.

Word Nonword

Length-based SES-based Length-based SES-based

Beta P Beta P Beta P Beta P

WL .162 o .001nn – – .220 o .001nn – –

OrthN � .059 .013n
� .052 .026n

� .003 .925 .008 .810

SES – – .169 o .001nn – – .235 o .001nn

Group .618 o .001nn .617 o .001nn .640 o .001nn .643 o .001nn

WL_Group .185 o .001nn – – .200 o .001nn – –

SES_Group – – .191 o .001nn – – .202 o .001nn

LnCE_Freq � .134 o .001nn
� .129 o .001nn – – – –

R2 (%) 46.9 47.2 48.6 48.9

F change P F change P F change P F change P

R2 change (from the full model in Table 7) 7.36 .001nn .39 .68 4.17 .02n 1.07 .34

Note: nnCorrelation is significant at the .01 level; nCorrelation is significant at the .05 level; Beta coefficients presented were based on the standardized scores. WL: word

length; OrthN: orthographic neighbourhood size; SES: summed error score; Group: severity group; SES_Group: the product of summed error score and group; WL_Group:

the product of word length and group; Ln_CE_Freq: log CELEX frequency.

Y. Chang et al. / Neuropsychologia 50 (2012) 2773–27882784
Overall for both words and nonwords, the regression results
suggest that summed error score may be a better predictor than
word length for PA patients’ reaction times when reading both
words and nonwords. In addition, the results confirmed our
previous observations that the effect of summed error score was
modulated by severity, suggesting the severe patients are more
sensitive to visual processing difficulty of words than are the
milder patients. However, the high level of multicollinearity
between word length and SES indicates that further investigation
is required to confirm this.

4.3. Additional analyses to explore the influence of multicollinearity

The results of Section 4.2 have shown the summed error score
was a stronger predictor than word length for PA patients’ naming
latencies. However, this interpretation of predictor variables
requires further exploration because summed error score is
highly correlated with word length, which will cause problems
related to multicollinearity. Further collinearity diagnostic ana-
lyses showed that the eigenvalue of the last component was .002
and its condition index was 48.32. This component also had high
variance proportions for WL and SES coefficients, which were .96
and .95 respectively. According to Myers and Well (2003), this
would indicate the presence of a serious multicollinearity pro-
blem. To explore this issue, we performed three further analyses:
(1) we ran separate regression models either with WL or SES as
predictors and compared the total variance explained. (2) We
regressed out all influence of WL from SES and used the residuals
as an additional predictor in the WL model (we also conducted
the reverse analysis regressing out all influence of SES from WL).
(3) We conducted a factorial analysis where we constructed two
subsets of stimuli consisting of four or five letters. In one set SES
was matched across word lengths whereas the other set was not
constrained by SES. If SES is the true driver of the length effect
than we expected that there would be an interaction such that the
word length effect would be abolished in the set that was
matched for SES.
1 Other lexical variables here include log Celex frequency, orthographic

neighbourhood size, severity group and the interaction term. Age-of acquisition

and imageability are not considered because, as mentioned, not all of the items

used for analysis have ratings on these measures.
4.3.1. Comparison of explained variance

One way to compare the predictive performance of summed
error score and word length is to compare the amount of variance
which can be accounted for by two regression models with either
summed error score or word length coupled with all the other
lexical variables1 used in the previous regression model. Both
regression models then can be tested to see whether the R2

change is significant from the full model in Table 7. Thus, separate
regression analyses were conducted for both word and nonword
reading. The results showed that the model using SES as a
predictor could account for slightly more variance than the model
with word length as a predictor (R2

¼ .472 versus .469), as
reported in Table 8. This was also the case for the nonword
reading where the model with SES predicted a slightly higher
portion of variance than did the model with word length
(R2
¼ .489 versus .486). Importantly, when comparing with the

full model (including all variables as predictors) the R2 change
was significant for the length-based model while the change was
not significant for the SES-based model. This suggests that the
length-based model is a significantly worse predictor of word
reading latency than the SES-based model. Similar results were
obtained for nonwords, also shown in Table 8. Overall, these
results confirmed the previous regression data and the regression
analyses conducted thus far all show a consistent pattern.
Although the difference in R2 values is small (.3% in both cases),
this small difference is exactly what we would predict if we
assume that the RTs of patients are primary driven by visual
processing difficulty, which will inevitably be largely, but not
completely, determined by word length.
4.3.2. Analysis of the predictive ability of residual SES and WL scores

Another test of the reliability of the difference in predictive
ability between SES and WL is to investigate whether a significant
portion of variance can be explained by the residual of summed
error score after the length factor is partialled out. If there is a
unique portion of variance of reaction times which can be
accounted for by the SES residual, this would suggest that
summed error score contains useful information on visual difficulty,
which cannot be obtained by using simple word length. To test this
we regressed summed error score by word length to remove any
covariance between them. Thus, there was no correlation between



Table 9
Regression coefficients of all predictor variables in the length-based model with the SES residual and the SES-based model with the WL residual in predicting PA patients’

reaction times.

Word Nonword

Length-based SES-based Length-based SES-based

Beta P Beta P Beta P Beta P

WL .169 o .001nn – – .232 o .001nn – –

OrthN � .050 .036n
� .049 .038n .013 .703 .012 .732

SES – – .172 o .001nn – – .237 o .001nn

Group .617 o .001nn .617 o .001nn .642 o .001nn .643 o .001nn

WL_Group .185 o .001nn – – .201 o .001nn – -

SES_Group – – .191 o .001nn – – .202 o .001nn

LnCE_Freq � .131 o .001nn
� .131 o .001nn – – – –

SES residual .033 .033n – – .056 .015n – –

WL residual – – .013 .390 – – .017 .455

R2 (%) 47.0 47.2 48.9 48.9

Note: nnCorrelation is significant at the .01 level; nCorrelation is significant at the .05 level; Beta coefficients presented were based on the standardized scores. WL: word

length; OrthN: orthographic neighbourhood size; SES: summed error score; Group: severity group; SES_Group: the product of summed error score and group; WL_Group:

the product of word length and group; Ln_CE_Freq: log CELEX frequency; SES Residual: residual of regressing SES by WL; WL Residual: residual of regressing WL by SES.
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the SES residual and word length. The residual was then used as an
additional predictor in the length-based regression model. As shown
in Table 9, the regression results showed all variables accounted for
a significant portion of variance for both word and nonword reading
except that orthographic neighbourhood size was not a significant
predictor in the nonword regression. Most importantly, the SES
residual variables had significant unique effects in both word and
nonword regression analyses. This conclusion was supported by the
opposite test; using the residual obtained from regressing word
length by summed error score in the SES-based models. In this case,
the WL residual variables did not explain a significant portion of the
variance in the word and nonword regression analyses. Comparison
of the standardized betas for the residuals in the word and nonword
cases suggests that the effect of the SES residuals was between
2.5 and 3.3 times greater than the effect of the WL residuals.
Fig. 8. Mean reaction times for all patients with different matching conditions of

summed error score.
4.3.3. Factorial approach

Another way to directly test the effect of summed error score
generated by the network against word length is to test for an
interaction pattern similar to that observed in Fiset et al.’s (2005)
study. However, because of the limited number of words in
Weekes’s list, only four- and five-letter words could be used for
test stimuli. Thus, two word lists were created and matched
across lengths on Celex frequency and orthographic neighbour-
hood size. In the uncontrolled condition, words of different
lengths were matched on the average error score of their
constituent letters so that summed error score increased linearly
with word length. While in the controlled condition, words were
matched on their summed error score. There were 20 items in the
uncontrolled condition and 14 items in the controlled condition. T
tests comparing lexical variables of the words across different
lengths showed no significant differences in frequency and
orthographic neighbourhood size (all ps4 .05).

A 2�2 ANOVA was performed on patients’ average RTs, in
which word length and condition (controlled versus uncontrolled)
were used as between-item factors. The main effect of word
length was significant, F(1, 30)¼5.89, p¼ .021, while the main
effect of condition was not, F(1, 30)¼1.05, p¼ .313. Importantly,
there was a significant interaction between word length and
condition, F(1, 30)¼6.08, p¼ .020, as shown in Fig. 8. Although
the range of word lengths is slightly smaller than the 5–7 letters
used in Fiset et al.’s study, the result produced a similar interac-
tion pattern to that seen in Fiset et al.’s (2005; Fig. 1) data,
showing an absence of word-length effects when summed error
score was matched across lengths, while the effects persisted
where SES was matched on a per letter basis.

Taken together, despite the potential issues of multicollinear-
ity, these additional results strongly suggest that visual proces-
sing difficulty, rather than simple word length, is the key factor
driving response times in pure alexic patients.
5. General discussion

This study describes a neural network model that can recog-
nise printed letters in a variety of sizes and fonts including some
that it was not trained on. When presented with visually
degraded stimuli the network generated a font dependant letter
confusability matrix similar to that obtained from human obser-
vers viewing degraded stimuli in the same font. During training
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the network developed a set of feature detectors that supported
recognition of letters in various sizes and fonts. The network was
also able to provide a good account of impaired reading in PA
patients. A regression model including summed error score taken
from the network was able to predict the word naming latencies
of a group of 22 PA patients with the model accounting for 47% of
the variance. Overall the findings suggest that visual processing
difficulty, as indexed by summed error score (SES), is the key
factor that determines PA patients’ reaction times. This factor is
very closely related to simple word length, but the analyses
conducted here suggest SES can account for more unique variance
than WL. Crucially, controlling for SES eliminates the WL effect.
Unlike the IA model (McClelland & Rumelhart, 1981) and its
derivatives, the current network was able to learn to extract
features as a consequence of exposure to the training examples.
Thus the feature set used to support recognition becomes an
emergent property of the network’s experience. This means it is
not limited to the recognition of a specific font type as there is
always the possibility of learning new features that are required
for additional fonts. The current network provides an important
link between visual input and the development of letter features.
The generalisation performance of the network was 96.42%
correct on the validation set, indicating that the model was able
to recognise letters never seen before. Further explorations of the
network’s generalisation showed that the network could also
recognise letters in novel fonts.

A key finding from this study is that the network has the
ability to simulate letter confusability data obtained from human
subjects. Letter confusability is often used to try and identify
which features are crucial for human letter recognition (Bouma,
1971; Gilmore et al., 1979; Loomis, 1982; Townsend, 1971; Van
der Heijden et al., 1984). The comparison between simulations
and experimental data provide a sense of the similarity between
features extracted by the model and those used in human letter
recognition tasks. When training on the same font letters as those
used in the experiments, the network can account for the
confusability data obtained from the human subjects. The impor-
tance of font type as a factor in determining the similarity
between different confusability matrices is highlighted by the
experimental data reported in Tables 2A and 2B, where studies
using similar techniques and similar levels of degradation still
produce considerable differences in the correlations between the
identification accuracies and confusion values if the fonts are not
similar. Another approach to measuring confusability is to use
inverse discrimination times. Using this approach Courrieu et al.
(2004) also obtained significant correlations with the existing
confusability studies (Bouma, 1971; Jacobs et al. 1989) but the
values were only at the moderate level. It is possible that the use
of different techniques for degrading the stimuli complicated the
outcomes (Courrieu et al., 2004). However, based on our findings
another possible explanation for these discrepancies is the use of
different font types. This explanation may be consistent with Pelli
et al.’s (2006) finding that font types are particularly important to
letter recognition because the visual complexities of the same
letter in different fonts can be very different.

Data analyses of the internal representations of the network
showed significant correlations between human confusion
values and similarities in the internal representational structure.
Factor analysis of this representational structure suggested
that recognition was supported by the detection of eight visual
features. These were simple shapes including: a round curve; an
n-shape; a vertical line; an inverted L; a V-shape; a c-like
feature; a hook-shape and repeated vertical strokes. Although
Fiset et al. (2008, 2009) found that line termination is the most
important feature for recognising both lower and upper case
letters in Arial font, they also reported additional useful feature
sets for recognising individual letters based on the classification
images and these show some interesting similarities and differ-
ences with our own data. For instance, the round curve shaped
feature (Table 5) shared by some upper case letters like C, O and
U also can be observed in Fiset et al. (2009; Fig. 2). However, in
our data the upper case letters G and Q also had high loadings on
this component, while Fiset et al. (2009) reported the most
important features were the horizontal bar and terminations for
letter G and the terminations (i.e., the lower short bar) for Q. It is
important to note that this does not necessarily mean that
letters G and Q do not have a curve shaped feature according
to Fiset’s analysis. In fact the differences between the analyses
may be largely due to the use of different feature identification
techniques. The bubbles technique employed by Fiset et al.
(2008, 2009) is particularly useful for revealing small unique
features such as line terminations and intersections, which are
the most salient features for individual letters. By contrast, the
factor analysis conducted here is designed to identify a common
set of features shared across letters. These two techniques
therefore tend to address different aspects of features for letter
recognition with Fiset et al. emphasising unique features while
our data emphasises shared features.

Further evidence for the generality of the model comes from
its ability to explain a considerable fraction of the variance in the
reading times of PA patients. Using summed error score to
directly measure visual processing difficulty, we demonstrated
that summed error score was slightly better at predicting RT than
word length, accounting for a significant additional .3% of the
variance (based on 22 PA patients’ reading data). These results
held for both word naming and nonword naming. Although this
difference is relatively small, it is theoretically important, because
sensitivity to summed error score suggests that the primary
deficit in these patients is related to visual processing rather than
the adoption of a serial processing strategy. Summed error score
and word length are very closely correlated so it is conceivable
that this conclusion may not be valid because of the problems
with multicollinearity. However, further analyses conducted in
Section 4.3 confirmed that summed error score carries additional
information over and above word length, which makes it better
than word length alone for predicting PA patients’ RTs. Crucially
controlling for SES in a subset of the stimuli eliminates the word
length effect. Therefore it is possible to conclude that visual
processing difficulty is the key factor in explaining PA patients’
RTs. In addition there was an interaction between summed error
score and severity, indicating that severe patients are more
sensitive to this factor. These findings provide support for the
peripheral visual deficit account of pure alexia, which also
explains why patients are sensitive to the visual similarity
between letters (Fiset et al. 2005). Additionally, it is worth noting
that patients’ reading times were significantly affected by fre-
quency, age-of-acquisition and orthographic neighbourhood size.
These results are consistent with previous studies showing that
some PA patients are sensitive to lexical factors including word
frequency (Behrmann, Plaut et al., 1998; Montant & Behrmann,
2001), age-of-acquisition (Cushman & Johnson, 2011), and ortho-
graphic neighbourhood size (Arguin et al., 2002; Fiset, Arguin
et al., 2006; Montant & Behrmann, 2001), suggesting that some
top-down influences are still being activated by the visual stimuli.
This might lead to stronger top-down effects in PA patients
who need to compensate for the degraded bottom-up signals
(Behrmann, Plaut et al., 1998; Johnson & Rayner, 2007; Montant &
Behrmann, 2001).

The main limitation of this model is that it can only recognise
isolated letters and it is unable to address the role of context in
recognition. Further work might extend the present model to
become a full word reading model and train the network with
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feedback connections from the word layer back to the letter input
layer. In the current model, the output layer could be considered
as an area coding for abstract letter identities corresponding to a
brain region within the left fusiform gyrus, also known as the
visual word form area (VWFA). This area is thought by many
(Cohen et al., 2000, 2004, 2002) to be specific to the processing of
visual word forms and it is certainly true that damage to the
VWFA itself or the connections to and from this area results in
impaired letter recognition as seen in PA patients. However, an
alternative account is that the left fusiform gyrus region is for
generic object processing and is not limited to visual word form
processing (Devlin, Jamison, Gonnerman, & Matthews, 2006; Price
& Devlin, 2003). In the context of PA patients the conflicting
interpretations of the precise function of VWFA might be partly
due to exactly what source of behavioural data is used. Studies
that suggest an exclusively word-form specific role for VWFA
tend to assume that word recognition is impaired because of the
length effect in RT, but that object recognition is intact because
patients can pass standard object recognition tests that focus on
accuracy rather than RT. The object recognition accuracy of PA
patients is often within a normal range (Farah & Wallace, 1991;
Starrfelt, Habekost, & Leff, 2009). However, several recent studies
have found that PA patients show RT deficits in object recognition
tasks (Behrmann, Nelson et al., 1998; Mycroft, Behrmann, & Kay.,
2009) similar to their RT deficits in words; suggesting a general
visual impairment rather than a purely orthographic problem.
Further support for this view comes from a study by Woodhead
et al. (2011), which shows that the left VWFA is preferentially
tuned to high spatial frequencies, whereas the right analogue area
is more sensitive to lower frequencies. This would suggest that
the VWFA should be more sensitive to word stimuli, which carry
more information in higher spatial frequencies than do faces or
objects. However, damage to the area would still be expected to
impair performance on all classes of visual stimuli, provided a
sufficiently sensitive test is used.

The model presented here could be extended to do simple
object recognition tasks as well as letter recognition to help with
the examination of these two contrasting theories in the pure
alexia literature.

In summary, the current model is able to develop its own
representations to capture a set of visual features that support
letter recognition of both learned and novel letters in a variety of
sizes and fonts. It also shows sensitivity to letter confusability and
network derived confusability matrices correlate well with
human data provided that they are using the same font. We
demonstrate that network generated summed error score (i.e., a
measure of visual processing difficulty) is the key factor in
determining the reaction times of this group of PA patients.
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